Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition.

نویسندگان

  • Tsukasa Nagaoka
  • Fuqiang Zhao
  • Ping Wang
  • Noam Harel
  • Richard P Kennan
  • Seiji Ogawa
  • Seong-Gi Kim
چکیده

The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional magnetic resonance imaging (fMRI) responses to visual stimulation were measured under normal and hypotension conditions in isoflurane-anesthetized cats at 4.7 T. When the mean arterial blood pressure (MABP) decreased from 89+/-10 to 50+/-1 mm Hg (mean+/-standard deviation, n=5) by infusion of vasodilator sodium nitroprusside, baseline CBV in the visual cortex increased by 28.4%+/-8.3%. The neural activity-evoked CBV increase in the visual cortex was 10.8%+/-3.9% at normal MABP, but was negligible at hypotension. Positive BOLD changes of +1.8%+/-0.5% (gradient echo time=25 ms) at normal MABP condition became prolonged negative changes of -1.2%+/-0.3% at hypotension. The negative BOLD response at hypotension starts approximately 1 sec earlier than positive BOLD response, but similar to CBV change at normal MABP condition. Our finding shows that the negative BOLD signals in an absence of CBV changes are indicative of an increase in CMRO2. The vasodilator-induced hypotension model simplifies the physiological source of the BOLD fMRI signals, providing an insight into spatial and temporal CMRO2 changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation.

The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can be estimated during neural activity using a reference condition obtained with known CMRO2 change. In ...

متن کامل

Age-dependent change in metabolic response to photic stimulation of the primary visual cortex in infants: functional magnetic resonance imaging study.

The blood oxygen level-dependent (BOLD) response to photic stimulation in the primary visual cortex (V1) reverses from positive to negative around 8 weeks of age. This phenomenon may be caused by increased oxygen consumption during stimulation as the result of a rapid increase of synaptic density at this age. To test this hypothesis, we applied existing mathematic models of BOLD signals to the ...

متن کامل

Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy.

Near-infrared spectroscopy (NIRS) was used to monitor human visual cortical function during and after photic stimulation (PS) in five adult volunteers. Cerebral blood volume (CBV) increased on the occipital surface during PS, but NIRS parameters did not change on the frontal surface. The increase in CBV was caused by a rapid increase in oxyhemoglobin with but a small increase in deoxyhemoglobin...

متن کامل

Dynamics of oxygen delivery and consumption during evoked neural stimulation using a compartment model and CBF and tissue PO2 measurements

The dynamics of blood oxygen delivery and tissue consumption produced by evoked stimulation of the rat somato-sensory cortex were investigated. Tissue oxygen tension (P(O2)) and laser Doppler flowmetry (LDF) measurements were recorded under two experimental conditions: normal, which represented both oxygen delivery and consumption, and suppressed CBF (achieved using a vasodilator), which only r...

متن کامل

Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery.

The brain's response to functional activation is characterized by focal increases in cerebral blood flow. It is generally assumed that this hyperemia is a direct response to the energy demands of activation, the so-called flow-metabolism coupling. Here we report experimental evidence that increases in oxygen metabolism can occur after activation without increases in flow. When using multimodali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 26 8  شماره 

صفحات  -

تاریخ انتشار 2006